Phase Transition in a System of Random Sparse Boolean Equations

نویسندگان

  • Thorsten Ernst Schilling
  • Pavol Zajac
چکیده

Many problems, including algebraic cryptanalysis, can be transformed to a problem of solving a (large) system of sparse Boolean equations. In this article we study 2 algorithms that can be used to remove some redundancy from such a system: Agreeing, and Syllogism method. Combined with appropriate guessing strategies, these methods can be used to solve the whole system of equations. We show that a phase transition occurs in the initial reduction of the randomly generated system of equations. When the number of (partial) solutions in each equation of the system is binomially distributed with probability of partial solution p, the number of partial solutions remaining after the initial reduction is very low for p’s below some threshold pt, on the other hand for p > pt the reduction only occurs with a quickly diminishing probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

Self-organized critical random Boolean networks.

Standard random Boolean networks display an order-disorder phase transition. We add to the standard random Boolean networks a disconnection rule that couples the control and order parameters. In this way, the system is driven to the critical line transition. Under the influence of perturbations the system points out self-organized critical behavior. Several numerical simulations have been done ...

متن کامل

Order-to-chaos transition in the hardness of random Boolean satisfiability problems

Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that incl...

متن کامل

The Information Dynamics of Phase Transitions in Random Boolean Networks

Random Boolean Networks (RBNs) are discrete dynamical systems which have been used to model Gene Regulatory Networks. We investigate the well-known phase transition between ordered and chaotic behavior in RBNs from the perspective of the distributed computation conducted by their nodes. We use a recently published framework to characterize the distributed computation in terms of its underlying ...

متن کامل

Fisher Information at the Edge of Chaos in Random Boolean Networks

We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012